

Contents lists available at ScienceDirect

Displays

journal homepage: www.elsevier.com/locate/displa

Photoluminescence properties of Eu^{3+} -doped Na₂CaSiO₄ phosphor prepared by wet-chemical synthesis route^{*}

Yatish R. Parauha^{a,*}, D.K. Halwar^b, S.J. Dhoble^b

^a Department of Physics, R.T.M. Nagpur University, Nagpur 440033, India

^b Department of Electronics, M.S.G. College, Malegaon Camp-423105, India

ARTICLE INFO

Keywords: Phosphor Light-emitting diode (LED) Photoluminescence (PL) Wet chemical method

ABSTRACT

The present investigation focuses on the development of Eu^{3+} activated phosphors for near ultraviolet (NUV) excited light emitting diode (LED) applications. In this investigation, we have synthesized a series of Na2CaSiO4: Eu³⁺ phosphors via wet-chemical method and characteristic of synthesized phosphors have been analyzed by Xray diffraction (XRD), Scanning electron microscopy (SEM), Thermo gravimetric analysis- Differential thermal analysis (TGA-DTA) and photoluminescence (PL) techniques. The recorded excitation band indicates a broad excitation band centered at 262 nm due to charge transfer (CT) band and sharp peaks at 395 nm and 466 nm due to ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ and ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transition of Eu³⁺ ions. The highest excitation intensity was observed at 396 nm wavelength. Therefore under 396 nm excitation, the emission spectrum showed characteristics peaks located at 595 nm and 615 nm, which are attributed due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺ ions. Emission spectra shows dominant emission peak at orange region around 595 nm due to the magnetic dipole transition of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$. In addition, the effects of the Eu $^{3+}$ ions on the emission intensity were investigated, it was found that the emission intensity increases as the concentration of Eu³⁺ ions increases up to 0.5 mol%. Thereafter, PL emission intensity was decreased due to concentration quenching. The CIE Chromaticity coordinate of the prepared phosphor was located in the orange region around (0.584, 0.421) with high color purity. As per the investigation of prepared Na₂CaSiO₄:Eu³⁺ phosphors, it was concluded that it is a promising candidate for lighting and display applications.

1. Introduction

In the past few decades, rare-earth activated phosphors have attracted great attention from research scholars and the scientific community, because of their wide applications, such as lighting, displays, lasers, solar cells, sensors, bio-imaging, fingerprint detection, phototherapy, and plant growth, etc[1–10]. Already as a commercially applicable product, the developed inorganic phosphors play an important role in White LEDs (WLEDs) [11–13]. In the modern era, lighting devices consume a large amount of energy for low output voltages. WLEDs are the only lighting devices that provide high output. In the field of lighting, LEDs have attracted worldwide attention, mainly due to their advantages such as energy saving, eco-friendly features, fast switching, and lifetime, etc[11–14]. Currently, blue LED chips coated with $Y_3Al_5O_{12}$ (YAG):Ce³⁺ yellow emitting phosphors are used in the most commercial WLEDs [15]. However, this approach is facing several

problems such as low color rendering index (CRI < 70), high correlated color temperature (CCT > 7000 K), and lack of red emission in the luminescence spectra [15–18]. One of the simplest and most researched ways to overcome these anomalies of YAG:Ce³⁺ and to obtain white light is the development of orange-red phosphors. So, research community trying to development of highly efficient novel red emitting LED phosphors.

In the current status, a number of research papers are published for the development of orange red emitting phosphors and trying to improve the luminescence properties of the existing phosphors. Especially, Eu^{3+} activated phosphors have been investigated in detailed. As per the literature, Eu^{3+} is interesting lanthanide ion because it's have potential for lighting and display devices. Generally, Eu^{3+} activated phosphors exhibits strong sharp emission peaks in the orange region around 593 nm and the red region around 615 nm due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu^{3+} ions [8,10,19]. Yongbin Hua et al [16]

* Corresponding author.

https://doi.org/10.1016/j.displa.2022.102304

Received 22 February 2022; Received in revised form 17 August 2022; Accepted 19 September 2022 Available online 24 September 2022 0141-9382/© 2022 Elsevier B.V. All rights reserved.

 $^{\,\,^{\}star}\,$ This paper was recommended for publication by Prof G Guangtao Zhai.

E-mail address: yatishparauha15@gmail.com (Y.R. Parauha).

investigated Eu^{3+} activated Sr_3MOO_6 red emitting phosphors by solid state reaction method. Under these UV and blue excitations, the synthesized phosphors show superior luminescence properties and suitability for the WLEDs and flexible display film. S. Wang et al [20] reported red emitting $Ba_3Lu_4O_9:Eu^{3+}$ phosphors for warm white light emitting diodes (WLEDs). Peng Du et al [21] reported red emitting Eu^{3+} activated NaBiF₄ phosphors that exhibit strong red emission due to the dipole–dipole interaction with 73.1 % internal quantum efficiency. X. Huang et al [22] investigated Na₂Gd(PO₄)(MoO₄) phosphors, which are synthesized via solid-state reaction method. In his investigation, the authors reported that the synthesized phosphors exhibit strong red emission under NUV excitation around 395 nm. T. Sakthivel et al [23] reported Eu^{3+} activated Na₂Y₂B₂O₇ phosphors and reported red emission under NUV excitation with 36.6 % internal quantum efficiency.

Generally, it is well known that the luminescence properties of rare earth doped phosphors are strongly depending on the host materials. Therefore, the selection of proper host materials is an important task for the development of rare earth activated phosphors for WLEDs. Up to till date, various inorganic host materials were synthesized such as such as fluoride, molybdate, germanate, silicates, tungstate, etc. matrix. Nowadays, $A_2(A = Li, Na, K)M(M = Ca, Sr, Ba, Mg)SiO_4$ systems have been extensively investigated for WLEDs by several scholars and scientists, because of their excellent thermal and hydrolytic stabilities that meet the requirements for efficient host materials [24,25]. Therefore, we have chosen the silicate based material as the host and doped Eu^{3+} ions. In the present investigation, Eu³⁺ activated Na₂CaSiO₄ phosphors were synthesized by wet chemical method and their luminescence properties were analyzed. In the past, Huang et al [26] investigated Eu^{3+} and Dy^{3+} doped and co-doped Na₂CaSiO₄ phosphors by sol-gel method and their photoluminescence properties studied systematically. Xie et al [27] reported deep red-emitting Na₂CaSiO₄:Eu³⁺ phosphors by solid state reaction method. Shi et al [28] also reported Na₂CaSiO₄:Eu³⁺ phosphors by solid state reaction method. In the both investigation, photoluminescence properties investigated and red color emission observed, suggested that Na₂CaSiO₄:Eu³⁺ phosphors are potential candidate for light-emitting diodes. To the best of our knowledge, the Na₂CaSiO₄:Eu³⁺ phosphor was first time reported by wet chemical method. The synthesized phosphors were characterized by XRD, SEM, TGA-DTA, and PL technique. Our results revealed that the synthesized phosphors have high possibilities and that it can be useful for lighting and display applications.

2. Experimental details

2.1. Material preparation

In this investigation, a series of Na₂CaSiO₄:x.mol%Eu³⁺ (x = 0, 0.1, 0.2, 0.5, 0.7, 1.0 mol %) phosphors were prepared by wet chemical method. Sodium nitrate [NaNO₃], calcium nitrate [Ca(NO₃)₂·4H₂O], silicon dioxide (SiO2), europium oxide [Eu2O3] were used as raw materials in this synthesis. All these raw materials were purchased from Loba chemie with A.R. grade and 98-99.99 % purity. In this synthesis, all raw materials were weighed according to the composition, then transferred to a glass beaker and dissolved with double distilled water. Here, Eu is available as an oxide form, so we convert it to nitrate form by dissolving stoichiometric amounts of europium ions in a concentrated HNO₃. The mixed solution with distilled water was stirred using a magnetic stirrer at 80 °C. The precipitate product was filtered and washed with acetone for several times and then dried in an oven for overnight. The obtained powder was crushed with mortar and pestle to a fine powder then placed in a crucible and annealed for 5 hrs in a furnace at 800 °C. Thereafter, the obtained powder was used for further characterization.

2.2. Characterization techniques

In the current investigation, XRD pattern of the synthesized material was analyzed by Rigaku miniflex d 600 X-ray diffractometer in the range of 10° to 70° with 0.02°/sec scanning rate. The size of the particle and morphological behavior were analyzed by JSM-6360LV scanning electron microscope (SEM) instrument (JEOL, USA). Shimadzu DTG-60 simultaneous DTATG apparatus was used for thermal stability analysis of the synthesized material. The Shimadzu RF5301PC Spectro-fluorophotometer was used for the analysis of PL excitation and emission spectra. The photometric properties like CIE coordinates and color purity have been analyzed by the OSRAM SYLVANIA color calculator.

3. Results and discussion

3.1. XRD measurement

Fig. 1 shows the XRD pattern of our synthesized undoped and doped Na₂CaSiO₄ phosphor and the measured pattern is compared with the standard ICSD data file no. 98-002-4235. The XRD pattern clearly demonstrated that all diffraction peaks of the synthesized sample was matched well with the standard data and there were no additional peaks were found that confirmed the synthesized material was successfully prepared. The XRD pattern of the Eu³⁺ doped Na₂CaSiO₄ phosphor was similar to that of the undoped phosphor implying that the doping of Eu³⁺ ions does not change the crystal structure of the Na₂CaSiO₄ host. It is also clear from Fig. 1 that the diffraction peaks are sharp and intense, which is suggested that the prepared phosphor was crystalline in nature and homogeneous form. The Na₂CaSiO₄ phosphor has a cubic structure with Fm3m (225) space group. From the literature, it was found that ionic radii of Ca^{2+} and Eu^{3+} is 1.26 Å (CN = 8), 1.20 Å (CN = 8), respectively. Therefore, it is assumed that Eu^{3+} will enter in the place of Ca^{2+} ions. Furthermore, to better understand the dopant Eu^{3+} ions occupying Ca²⁺ sites in the Na₂CaSiO₄ host lattice, the radius percentage difference (D_r) between substituted ions and active ions should be obtained, which can be defined by the following expression [16]:

$$D_{\rm r} = \frac{R_1({\rm CN}) - R_2({\rm CN})}{R_1({\rm CN})} \times 100\%$$
(1)

Here, R_1 (CN) is radii of substituted (Ca²⁺) and R_2 (CN) is radii of activated Eu³⁺. If the D_r is smaller than 30 %, it is much easy to come into being a new solid-solution. With the help of Eq. (1), the value of D_r was calculated to be 4.76 % when CN = 8, suggesting that the Eu³⁺ could well substitute Ca²⁺ ion sites in Na₂CaSiO₄ host lattices.

Fig. 1. XRD Pattern of prepared Na₂CaSiO₄ phosphor and compared with ICSD. 98–002-4235.

3.2. Morphological behaviour

Fig. 2 revealed SEM micrographs of prepared Na_2CaSiO_4 phosphor. It was clear from the obtained SEM images that the particles are irregular in shape and agglomeration can easily see in the images, this may be possibly due to high temperature annealing. The average particle size of the prepared sample is found in the micrometers dimension. According to the literature, the morphological behavior of the prepared sample affects the luminescence properties. The literature suggests that the submicron size particle enhances the luminescence properties of the prepared sample [29–31]. The occurrence of submicron size particle along with better crystallinity is suitable for efficient white LEDs.

3.3. Thermal behaviour

The thermal stability of the prepared sample has been analyzed by TG-DTA technique. Fig. 3 shows TG-DTA curve of the prepared Na₂Ca-SiO₄ phosphor, which has been measured from room temperature to 800 °C. The DTA curve shows two endothermic bands around 100 °C and 180 °C, which may be possibly due to the evaporation of moisture and removal of gases. The TGA curve shows a total weight loss around 8–9 % that confirmed that the synthesized phosphors has excellent thermal stability.

3.4. Photoluminescence (PL) properties

The PL excitation spectrum of the synthesized Na₂CaSiO₄: 0.5 mol% Eu³⁺ phosphor has been monitored under 595 nm emission wavelength in the range of 220 nm to 500 nm, as shown in Fig. 4. The monitored excitation band exhibits a broad excitation band centered at 262 nm, which is known as the charge transfer (CT) band attributed due to the charge transition from oxygen 2p orbital (O²⁻) to the vacant europium 4f orbital (Eu³⁺) ions. Apart from this, several sharp excitation bands exhibit around 320 nm, 363 nm, 385 nm, 395 nm, 466 nm. These excitation band corresponded due to $^7F_0 \rightarrow ^5H_{6}$, $^7F_0 \rightarrow ^5D_4$, $^5F_0 \rightarrow ^5D_2$ transitions of Eu³⁺ ions, respectively [16,22]. The measured excitation spectrum shows the most intense excitation band around 395 nm, which is matched well with the excitation of the commercial NUV LED chips.

Under 395 nm excitation, PL emission spectra have been recorded for different concentration of Eu³⁺ ions in the range of 540 nm to 660 nm, as shown in Fig. 5. The showed emission spectrum exhibits orange and red emission bands around 588 nm, 595 nm, and 615 nm, respectively. The orange emission band splits into two emission bands, which may be possibly due to the crystal field effect. According to the crystal field effect, one transition can be splitted into one or more transitions. The observed orange emission bands (588 nm and 595 nm) are attributed to the ${}^5D_0 \rightarrow {}^7F_1$ and red emission band is corresponded to the ${}^5D_0 \rightarrow {}^7F_2$

Fig. 3. TG-DTA curve of prepared Na₂CaSiO₄ phosphor.

Fig. 4. PL Excitation spectrum of $Na_2CaSiO_4:0.5 \text{ mol}\% \text{ Eu}^{3+}$ phosphor monitored at 595 nm emission.

transitions of Eu³⁺ ions. According to the literature, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition is known as magnetic dipole (MD) transition and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is known as electric dipole (ED) transition. According to previous literature, the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (MD) transition is independent of the coordination

Fig. 2. SEM images of prepared Na2CaSiO4 phosphor.

Fig. 5. PL emission spectrum of $Na_2Ca_{(1-x)}SiO_4.\times$ mol% Eu^{3+} phosphors (x = 0.1, 0.2, 0.5, 0.7, 1.0) mol% under 395 nm excitation.

surroundings of the host lattice, whereas the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (ED) transition is highly dependent on the surrounding chemical environment of the dopant (Eu³⁺). Emission spectra clearly depicted that MD (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) transition is dominant than ED transition, therefore previous studies suggested that Eu³⁺ ions occupy low symmetry sites with no inversion center [32,33]. The recorded emission spectrum show variation in emission intensity with variation in concentration of Eu³⁺ ions. The structure of the emission bands are similar for each concentration. Fig. 6 shows variation in emission intensity with variation of Eu³⁺ concentrations, which demonstrated the emission intensity increases up to 0.5 mol%, thereafter the emission intensity decreased due to concentration quenching. The reason behind concentration quenching is already explained in the various research papers [8,19,29,33].

The concentration quenching is strongly correlated with the critical distance (R_c) between the Eu³⁺ ions. According to the proposed model of Blasse's theory, the critical distance (R_c) between Eu³⁺ ions can be calculated using following formula [16,22]:

$$R_{c} = 2\left(\frac{3V}{4\pi X_{c}N}\right)^{\frac{1}{3}}$$
(2)

Where V = volume of a unit cell, $X_c =$ critical concentration of Eu^{3+}

Fig. 6. Variation in emission intensity with variation of Eu³⁺ concentrations.

ions, and N= number of Eu $^{3+}$ sites in the unit cell. In the present investigation, V=418.5 Å 3, N=4 and $X_c=0.5.$ By using equation (2), the calculated value of R_c is around 11.69 Å. Previous studies suggested that if $R_c<5$ Å then exchange interaction is responsible for concentration quenching. But if, $R_c>5$ Å, then electric multipolar-multipolar interaction is responsible for concentration quenching [34,35]. In the current investigation, we found that the value of critical distance (R_c) is>5 Å, therefore the electric multipolar-multipolar interaction is responsible for concentration quenching in Eu $^{3+}$ doped Na_2CaSiO_4 phosphor.

The strengths of multipolar-multipolar interaction were calculated using Dexter theory. According to Dexter theory, a relation between the concentration of dopants and their respective luminescence emission intensity was established, as given below in equation (3):

$$\frac{I}{r} = k [1 + \beta x^{\frac{\theta}{3}}]^{-1}$$
(3)

Here, Where $\times =$ concentration of dopant, k and β is the constant, I = luminescence intensity, $\theta =$ strength of multipolar interaction. Literature suggested that the value of θ varies, indicating different types of interactions. Value of $\theta = 6$, 8, 10 indicating dipole–dipole (d-d) interaction, dipole-quadrupole (d-q) interaction, quadrupole–quadrupole (q-q) interaction, respectively [36,37]. Fig. 7 demonstrates the plot of log (I/x) as a function of log (x) in Na₂CaSiO₄:Eu³⁺ phosphor. From the linear fitting of the experimental data, we have found negative slope value (- $\theta/3$). The obtained value of θ is around to 6, therefore it was concluded that the dipole–dipole (d-d) interaction is responsible for the concentration quenching. Fig. 8 shows energy level diagram of Na₂Ca-SiO₄:Eu³⁺ phosphor.

3.5. Photometric characterization

The CIE chromaticity color coordinates of the synthesized samples was calculated using PL emission intensity and OSRAM SILVANIA color calculator 1931. Fig. 9 represents CIE chromaticity diagram of Na₂Ca-SiO₄:0.5 mol%Eu³⁺ phosphor. On the base of the PL emission spectrum, the chromaticity coordinate of the optimal doping concentration was calculated to be (0.584, 0.421) under 395 nm excitation wavelength. The plotted CIE chromaticity diagram shows the coordinate located in the orange-red region. The synthesized powder emitted red glow under UV light as shown in Fig. 10, implying that the Na₂CaSiO₄:0.5 mol% Eu³⁺ phosphor is a potential candidate to make WLEDs as a kind of redemitting phosphors.

The color purity of the dominant emission color of Na₂CaSiO₄:0.5

Fig. 7. Plot of log (I/x) as a function of log (x) in $Na_2CaSiO_4:Eu^{3+}$ phosphor.

Fig. 8. Energy level diagram of Na₂CaSiO₄:Eu³⁺ phosphor.

Fig. 9. CIE Chromaticity coordinate of $Na_2CaSiO_4:0.5 mol\%Eu^{3+}$ phosphor.

mol%Eu $^{3+}$ phosphor were analyzed by using following equation [38]:

4. Color purity =
$$\frac{\sqrt{(x-x_i)^2 + (y-y_i)^2}}{\sqrt{(x_d-x_i)^2 + (y_d-y_i)^2}} \times 100\% \dots (4)$$

Where (x, y) = CIE coordinate of phosphor, $(x_i, y_i) = CIE$ coordinate of white illumination, $(x_d, y_d) = CIE$ coordinate of dominated wavelength. In this investigation, (x = 0.584, y = 0.421), $(x_i = 0.310, y_i = 0.316)$ and $(x_d = 0.573, y_d = 0.416)$. Therefore, calculated color purity of synthesized Na_2CaSiO_4:0.5 mol%Eu^{3+} phosphor was around 95.65 %. The obtained result of Na_2CaSiO_4:0.5 mol%Eu^{3+} phosphor have high color purity for promising applications in WLEDs under NUV excitation.

5. Conclusion

In this investigation, we aimed to synthesis of Na₂CaSiO₄:Eu³⁺ phosphors and investigate their luminescence properties. The different concentration of Eu³⁺ doped Na₂CaSiO₄ phosphors have been successfully prepared by wet chemical method and their PL excitation and emission properties have been reported. In addition, the phase purity, morphological behavior, and thermal stability of the prepared phosphors have been also reported in this investigation. The PL excitation spectrum shows excitation bands around 262 nm (CT band), 395 nm, and 466 nm. The 395 nm excitation band is the most intense excitation band and it matches well with the NUV excitation of the LED chip. Therefore, 395 nm excitation has selected for the emission spectrum measurement. The emission spectra of different concentration of Eu³⁺ activated Na2CaSiO4 phosphors has been exhibiting a strong orange and red emission band due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺ ions. From the Dexter proposed model, it is clear that concentration quenching was observed due to dipole-dipole interaction. The CIE chromaticity coordinate of Na₂CaSiO₄:0.5 mol%Eu³⁺ phosphor was found around orange-red region with high color purity. The entire investigation and their output suggested that as synthesized Eu³⁺ doped Na₂CaSiO₄ phosphors have potential for lighting and display applications.

CRediT authorship contribution statement

Yatish R. Parauha: Methodology, Conceptualization, Investigation, Writing – original draft. D.K. Halwar: . S.J. Dhoble: Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 10. Digital Photograph of synthesized Na₂CaSiO₄:0.5 mol%Eu³⁺ phosphor under (i) Normal light (Day light) (ii) UV light.

Data availability

Data will be made available on request.

Acknowledgement

One of the authors, Yatish R. Parauha, is thankful to Department of Science and Technology(DST), India for financial support through INSPIRE fellowship (INSPIRE Code – IF180284).

References

- [1] Y. Wu, Y. Zhuang, Y. Lv, K. Ruan, R.J. Xie, A high-performance non-rare-earth deep-red-emitting Ca_{14-x}Sr_xZn₆Al₁₀O₃₅:Mn⁴⁺ phosphor for high-power plant growth LEDs, J. Alloys Compd. 781 (2019) 702–709, https://doi.org/10.1016/j. jallcom.2018.12.056.
- [2] S. Tamboli, G.B. Nair, S.J. Dhoble, D.K. Burghate, Energy transfer from Pr³⁺ to Gd³
 ⁺ ions in BaB₈O₁₃ phosphor for phototherapy lamps, Phys. B Condens. Matter. 535 (2018) 232–236, https://doi.org/10.1016/j.physb.2017.07.042.
- [3] K.N. Kumar, L. Vijayalakshmi, P. Hwang, A.D. Wadhwani, J. Choi, Bright redluminescence of Eu³⁺ ion-activated La₁₀W₂₂O₈₁ microphosphors for noncytotoxic latent fingerprint imaging, J. Alloys Compd. 840 (2020), 155589, https://doi.org/ 10.1016/j.jallcom.2020.155589.
- [4] G. Ajithkumar, B. Yoo, D.E. Goral, P.J. Hornsby, A.L. Lin, U. Ladiwala, V.P. Dravid, D.K. Sardar, Multimodal bioimaging using a rare earth doped Gd₂O₂S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties, J. Mater. Chem. B. 1 (2013) 1561–1572, https://doi.org/10.1039/c3tb00551h.
- [5] C. Gandate, Y.R. Parauha, S.G.M. Mushtaque, S.J. Dhoble, Current progress and comparative study of performance of the energy saving lighting devices: a review, J. Phys. Conf. Ser. 1913 (1) (2021) 012018, https://doi.org/10.1088/1742-6596/ 1913/1/012018.
- [6] S. Khan, Y.R. Parauha, D.K. Halwar, S.J. Dhoble, Rare Earth (RE) doped color tunable phosphors for white light emitting diodes, J. Phys. Conf. Ser. 1913 (2021), 012017, https://doi.org/10.1088/1742-6596/1913/1/012017.
- [7] R. Rajeswari, N. Islavath, M. Raghavender, L. Giribabu, Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dye-Sensitized and Perovskite Solar Cells: A Review, Chem. Rec. 20 (2) (2020) 65–88, https://doi. org/10.1002/tcr.201900008.
- [8] S.R. Bargat, Y.R. Parauha, G.C. Mishra, S.J. Dhoble, Combustion synthesis and spectroscopic investigation of CaNa₂(SO₄)₂:Eu³⁺ phosphor, J. Mol. Struct. 1221 (2020) 128838, https://doi.org/10.1016/j.molstruc.2020.128838.
- [9] Y.R. Parauha, S.J. Dhoble, Thermoluminescence study and evaluation of trapping parameter of rare earth activated Ca₃Al₂O₆; RE (RE = Eu²⁺, C^{e3}+) phosphors, J. Mol. Struct. 1211 (2020), 127993, https://doi.org/10.1016/j. molstruc. 2020 127993
- [10] Y.R. Parauha, R.S. Yadav, S.J. Dhoble, Enhanced photoluminescence via doping of phosphate, sulphate and vanadate ions in Eu³⁺ doped La₂(MoO₄)₃ downconversion phosphors for white LEDs, Opt. Laser Technol. 124 (2020), https://doi.org/ 10.1016/j.optlastec.2019.105974.
- [11] L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, A. Suchocki, Double perovskite LiLaMgWO₆:Eu³⁺ novel red-emitting phosphors for solid sate lighting: Synthesis, structure and photoluminescent properties, Ceram. Int. 43 (2017) 2720–2729, https://doi.org/10.1016/j.ceramint.2016.11.093.
- [12] X. Huang, H. Guo, Finding a novel highly efficient Mn⁴⁺-activated Ca₃La₂W₂O₁₂ far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application, Dye. Pigment. 152 (2018) 36–42, https://doi.org/10.1016/j.dyepig.2018.01.022.
- [13] D. Chen, Y. Zhou, J. Zhong, A review on Mn⁴⁺ activators in solids for warm white light-emitting diodes, RSC Adv. 6 (89) (2016) 86285–86296.
- [14] C.M. Mehare, Y.R. Parauha, N.S. Dhoble, C. Ghanty, S.J. Dhoble, Synthesis of novel Eu²⁺ activated K₃Ca₂(SO₄)₃F down-conversion phosphor for near UV excited white light emitting diode, J. Mol. Struct. 1212 (2020), 127957, https://doi.org/ 10.1016/j.molstruc.2020.127957.
- [15] S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun, X. Huang, Novel highly efficient and thermally stable Ca₂GdTaO₆:Eu³⁺ red-emitting phosphors with high color purity for UV/blue-excited WLEDs, J. Alloys Compd. 804 (2019) 93–99, https:// doi.org/10.1016/j.jallcom.2019.06.388.
- [16] Y. Hua, S.K. Hussain, J.S. Yu, Eu³⁺, activated double perovskite Sr₃MoO₆ phosphors with excellent color purity for high CRI WLEDs and flexible display film, Geram. Int. 45 (15) (2019) 18604–18613, https://doi.org/10.1016/j. ceramint.2019.06.084.
- [17] X. Huang, Q. Sun, B. Devakumar, Preparation, crystal structure, and photoluminescence properties of high-brightness red-emitting Ca₂LuNbO₆:Eu³⁺ double-perovskite phosphors for high-CRI warm-white LEDs, J. Lumin. 225 (2020), 117373, https://doi.org/10.1016/j.jlumin.2020.117373.

- [18] S. Wang, B. Devakumar, Q. Sun, J. Liang, L. Sun, X. Huang, Efficient green-emitting Ca₂GdZr₂Al₃O₁₂:Ce³⁺, T^{b3}+ phosphors for near-UV-pumped high-CRI warm-white LEDs, J. Lumin. 220 (2020), 117012, https://doi.org/10.1016/j. ilumin.2019.117012.
- [19] Y.R. Parauha, V. Chopra, S.J. Dhoble, Synthesis and luminescence properties of RE3+ (RE = Eu³⁺, Dy³⁺) activated CaSr₂(PO₄)₂ phosphors for lighting and dosimetric applications, Mater. Res. Bull. 131 (2020), 110971, https://doi.org/ 10.1016/j.materresbull.2020.110971.
- [20] S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun, X. Huang, Novel high color-purity Eu³⁺ -activated Ba₃Lu₄O₉ red-emitting phosphors with high quantum efficiency and good thermal stability for warm white LEDs, J. Lumin. 209 (2019) 156–162, https://doi.org/10.1016/j.jlumin.2019.01.050.
- [21] P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu³⁺-activated NaBiF₄ red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays, Chem. Eng. J. 337 (2018) 91–100, https://doi.org/10.1016/j. cej.2017.12.063.
- [22] X. Huang, H. Guo, B. Li, Eu³⁺-activated Na₂Gd(PO₄)(MoO₄): A novel highbrightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes, J. Alloys Compd. 720 (2017) 29–38, https://doi. org/10.1016/j.jallcom.2017.05.251.
- [23] T. Sakthivel, G. Annadurai, R. Vijayakumar, X. Huang, Synthesis, luminescence properties and thermal stability of Eu³⁺-activated Na₂Y₂B₂O₇ red phosphors excited by near-UV light for pc-WLEDs, J. Lumin. 205 (2019) 129–135, https://doi. org/10.1016/j.jlumin.2018.09.008.
- [24] H. He, R. Fu, Y. Cao, X. Song, Z. Pan, X. Zhao, Q. Xiao, R. Li, $Ce^{3+} \rightarrow Eu^{2+}$ energy transfer mechanism in the Li₂SrSiO₄:Eu²⁺, Ce^{3+} phosphor, Opt. Mater. (Amst) 32 (5) (2010) 632–636, https://doi.org/10.1016/j.optmat.2010.01.009.
- [25] X. Huan, W. Zhang, X. Wang, J. Zhang, Optical characteristics and energy transfer between Eu³⁺ and Dy³⁺ in Na₂CaSiO₄:Dy³⁺, Eu³⁺ white-emitting phosphor, J. Alloys Compd. 873 (2021) 159803, https://doi.org/10.1016/j. jallcom.2021.159803.
- [26] R.L. Mubiao Xie, Yubin Li, Na₂CaSiO₄:Eu³⁺-deep red-emitting phosphors with intense 5D0-7F4 transition, J. Lumin. 136 (2013) 303–306, https://doi.org/ 10.1149/2.040301jss.
- [27] Y. Shi, Z. Yang, W. Wang, G.e. Zhu, Y. Wang, Novel red phosphors Na₂CaSiO₄:Eu³⁺ for light-emitting diodes, Mater. Res. Bull. 46 (7) (2011) 1148–1150, https://doi. org/10.1016/j.materresbull.2011.03.001.
- [28] N. Shaishta, W.U. Khan, S.K.B. Mane, A. Hayat, D.D. Zhou, J. Khan, N. Mehmood, H.K. Inamdar, G. Manjunatha, Red-emitting CaSc₂O₄:Eu³⁺ phosphor for NUVbased warm white LEDs: structural elucidation and Hirshfeld surface analysis, Int. J. Energy Res. 44 (2020) 8328–8339, https://doi.org/10.1002/er.5376.
- [29] Y.R. Parauha, S.j., Dhoble, Photoluminescence and electron-vibrational interaction in 5d state of Eu²⁺ ion in Ca₃Al₂O₆ down-conversion phosphor, Opt. Laser Technol. 142 (2021), 107191, https://doi.org/10.1016/j.optlastec.2021.107191.
- [30] Y.R. Parauha, N.S. Shirbhate, S.J. Dhoble, Color-tunable luminescence by energy transfer mechanism in RE (RE = Eu²⁺, Tb³⁺)-doped Na₂SrPO₄F phosphors, J. Mater. Sci. Mater. Electron. 33 (2022) 15333–15345, https://doi.org/10.1007/s10854-022-08423-2.
- [31] W.N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors, Chem. Mater. 19 (2007) 1723–1730. 10.1021/ cm062887p.
- [32] X. Huang, S. Wang, J. Liang, B. Devakumar, Eu³⁺-activated Ca₂YTaO₆ doubleperovskite compound: A novel highly efficient red-emitting phosphor for near-UVexcited warm w-LEDs, J. Lumin. 226 (2020), 117408, https://doi.org/10.1016/j. jlumin.2020.117408.
- [33] Y. Parauha, S.J. Dhoble, Synthesis and luminescence characterization of Eu³⁺ doped Ca₇Mg₂(PO₄)₆ phosphor for eco-friendly white LEDs and TL Dosimetric applications, Luminescence. 2 (2020), https://doi.org/10.1002/bio.3900.
- [34] G.V. Kanmani, V. Ponnusamy, G. Rajkumar, M.T. Jose, Development of novel Na₂Mg₃Zn₂Si₁₂O₃₀:Eu³⁺ red phosphor for white light emitting diodes, Opt. Mater. (Amst). 96 (2019), 109350, https://doi.org/10.1016/j.optmat.2019.109350.
- [35] X. Geng, Y. Xie, Y. Ma, Y. Liu, J. Luo, J. Wang, R. Yu, B. Deng, W. Zhou, Abnormal thermal quenching and application for w-LEDs: Double perovskite Ca₂InSbO₆:Eu³⁺ red-emitting phosphor, J. Alloys Compd. 847 (2020), 156249, https://doi.org/ 10.1016/j.jallcom.2020.156249.
- [36] N. Venkatesh Bharathi, T. Jeyakumaran, S. Ramaswamy, S.S. Jayabalakrishnan, Synthesis and characterization of a Eu³⁺-activated Ba_{2-x}V₂O₇:xEu³⁺ phosphor using a hydrothermal method: a potential material for near-UV-WLED applications, Luminescence. 36 (2021) 849–859, https://doi.org/10.1002/bio.4031.
- [37] D.L. Shruthi, A. Jagannatha Reddy, G.N. Anil Kumar, Structural, Judd-Ofelt, photoluminescence properties of Eu³⁺ activated SrWO₄ phosphors: Electronic, vibrational, elastic properties from ab initio study, Opt. Mater. (Amst). 118 (2021), 111243, https://doi.org/10.1016/j.optmat.2021.111243.
- [38] G. Yuan, R. Cui, J. Zhang, X. Zhang, X. Qi, C. Deng, Photoluminescence evolution and high thermal stability of orange red-emitting Ba_{3-x}Sr_xZnNb₂O₉:Eu³⁺ phosphors, J. Solid State Chem. 303 (2021) 122447, https://doi.org/10.1016/j. jssc.2021.122447.